On Analyzing Evolutionary Changes of Web Services*

Martin Treiber, Hong-Linh Truong, Schahram Dustdar

VitaLab, Distributed Systems Group
Institute of Information Systems
Vienna University of Technology
{treiber, truong, dustdar}@ nfosys.tuw en. ac. at

Abstract. Web services evolve over their life time and change theiaisigh. In
our work, we analyze Web service related changes and igatstinterdependen-
cies of Web service related changes. We classify changesbfsafvices for an
analysis regarding causes and effects of such changesibrelaitiedicated Web
service information model to capture the changes of WelicesvWe show how
to put changes of Web services into an evolutionary contettdllows us to de-
velop a holistic perspective on Web services and their b@kers in a ecosystem
of Web services.

1 Introduction

Web services undergo changes during their life time. Thigbior is of particular inter-
estwhen putting Web services in the context of Web serviosystems [1]. With regard
to Web services, a Web service ecosystem is the environmevitich a Web service
operates. The environment consists of different stakehslthat have interest in Web
services and influence or control the life cycle of a Web servio understand these
ecosystems, we need to understand Web services with regasblutionary aspects
since they are the central entities in the ecosystems. bicpkar, we need to analyze
the artifacts that have impact on Web services, Web sendosystems respectively,
and investigate the reasons for changes of Web services.

Currently there is little support for Web service evolutiemen though the evolution
of Web services accounts for major development costs. Tolkeitian of Web services
involves changes of requirements, changes of the implatient changes of the Web
service semantics, changes Web service usage and so op.ddtiefties originate from
different stakeholders, such as developers, provideesswnd service integrators that
interact in Web service ecosystems.

In this work, we focus on the complexity of evolutionary Wednsdce modifica-
tions. It's important for Web service providers to undemstéhe prerequisites and the
consequences of modifications of Web services in the lightofed resources (time,
manpower, money). Current practices to describe Web sndo not take these dy-
namic aspects into account. Approaches such as (WSDL [2],-G\8], WSMO [4],
WSDL-S [5]) primarily focus on interface related issues dndot model changes. We

* The research leading to these results has received fundingthe European Community’s
Seventh Framework Programme FP7/2007-2013 under graaeragnt 215483 (S-Cube).

argue that an evolutionary model requires a holistic patspgeon Web services and
needs to integrate information from various perspectiwewell as different (design
time and run time) data sources [6].

Real world Web services provide valuable input for our itigedions with regard
to the understanding of Web service evolution. In this paperare using real world
Web services of an Austrian SME called Wisup illustrate the challenges concerning
Web service evolution. Wisur provides business relateatin&tion to customers. Their
main business is to sell business reports with informatimuacompanies (turnover, fi-
nancial situation, etc) and consumer data (address, datefetc.) to their customers.
Wisur's customers use Wisur's Web services to search in Wislatabase and to ac-
cess the desired informatiénAs soon as the requirements of customers change, Wisur
needs to adapt their services accordingly. Examples aiedtance the addition of new
functions to existing services, or the creation of new Waises. In addition, Wisur
reviews it's Web services once a month to look for issuesrttight cause problems in
the future. For instance, a planned augmentation of a de¢alih consumer data can
lead to longer execution times of queries which have impadhe overall execution
time of the Web service that queries data from this datab&lben putting these activ-
ity into the context of Web service evolution, we can obséneeneed for classification
of modification activities under the umbrella of Web senawelution.In this paper, we
focus on the evolution of single Web services that we comsisdatomic building blocks
of Web service ecosystems. In particular we analyze chaofgafeb services based on
empirical observations. We investigate the impact of tlebseges from different per-
spectives. We propose a methodology that identifies infingrfactors of Web services
and a model of Web service related changes. Our major catitibis to define the ba-
sic element of Web service evolution, i.e. theolutionary stepand embed it in Web
service ecosystems. The rest of the paper is organizedlaw$olAfter summarizing
related work in Section 2 we provide our analysis of chan@®gad services in Section
3. We conclude the paper with a discussion and an outlookdtic®e4.

2 Redated Work

From an organizational point of view, our work is related émvice management in
general. Approaches such as WSDM [7] or WSMF [8] offer frarnekg to collect
data about Web services and to manage them. The work of Gasati [9] focuses
on the business perspective of Web service management.dtaaly [10] discuss the
management of service interface changes. The authorslikesersion-aware service
descriptions and directory models. The work by Kaminskj jhfroduces a framework
that supports service interface adaptors for backward etibip versioning of Web
services. Our work covers different aspects of service gagrsuch as runtime aspects
(e.g., QoS), implementation changes, semantic changes, et

The collection of run time information about Web servicesage statistics, logging,
etc.) is discussed by Ghezzi et. al. [12]. The area of Soévwnfiguration Manage-

! http://www.wisur.at
2 see http://webservice.wisur.at:8000/axis/serviceSNRISFuzzySearchService?wsdl for an
example of a Web service

ment [13] is also related to our research with regard to amalyf changes of software
systems and versioning issues. We follow ideas such as fhextion, classification
and monitoring of change events from the aforementionedoggbes. However, our
approach differs insofar, since we focus on evolutionapgats that are not covered by
management approaches.

From an evolutionary perspective, our work is closely edatio evolutionary as-
pects of software in general. Of particular importance é&swlork of in [14] where the
authors studied software changes and considered softystenss as dynamic entities
that change over time. Lessons can also be learned from #ie 8BE classification
scheme which is extensively discussed in [15] and [16].

Papazoglou [17] discusses the challenges of service @wmolahd introduces two
categories of service related changes. While similar irtspur work follows a broader
scope, since our approach introduces a concrete informataxlel to capture service
related changes and lays the foundation for deeper analfyservice related changes.
Andrikopoulos et. al. [18] discuss the management of sersfecification evolution.
The author’s abstract service definition model addressds $&bvice evolution on an
abstract layer whereas we follow a bottom up approach wétatialysis of single Web
services with regard to Web service evolution.

The work in [19] describes the use of a dependency structatexthat reflects the
overall software structure and highlights dependencyepattbetween software com-
ponents. Our work includes the aspect of dependency, hayweegdocus on a broader
set of information in our analysis (e.g., QoS informatiosage data).

3 The Anatomy of Web Service Changes

In this section, we analyze changes that are related to Weires. As indicated by
the working example of the introduction, changes of Webiservappen due to various
reasons. During our observations, we've developed a metbgy that classifies the
factors of influence associated with Web services (see TgbM/e base our classifi-
cation of the factors of influence on the work of Canfora andt&§0] that identified
the different stakeholders of Web services. Our proposatiadelogy consists of the
following steps:

1. Identify the stakeholders that are interested in the V@elice. This is done by an-
alyzing the development process of Web services and imgasty how the com-
munication process is structured. For instance, devesopigght be informed about
changes of Web service requirements by phone or by email.

2. ldentify the tasks of the corresponding stakeholderss Step is basically the as-
signment of responsibilities to the interested parties.iffstance, a user of a Web
service is responsible for giving feedback about the semparformance.

3. Collect data of Web services and identify the source ofddu@. In this step, we
distinguish between runtime and static data. Runtime m#dion (e.g., QoS, Web
service usage statistics) is provided by tools that contiisly monitor Web ser-
vices. Other Web service related information is (e.g., eguients, user feedback)
is entered into a persistence framework by developers, etc.

Perspective Task
Provider The provider is responsible for the planing and conceptfdheo\Web service.
This includes the definition of requirements, the negatiatdf SLA with
customers, service pricing policy, etc. as well as managiamnges of thesg.
Developer The main task of the developer is the implementation of thd W&rvice|
The developer needs to manage changes of interface destsipdlifferen
versions of the implementation and track change of requeregm

Service Integratail he service integrator’s task is to integrate externalisesvinto a software
system and focuses on technical aspects of services. 8émmgrators ane
interested in changes of the interface, QoS attributestandemantics of the
Web service since these have effects on the integrationeofMbb service.
Service integrators also modify the requirements of Webices.
User The end user of a Web service is the actual consumer of a Webesand has
interest in the functionality of Web services from a non téchl perspective.
The end user specifies the functional requirements and defin8 attribute
that must be satisfied by a Web service.

Broker The Web service broker manages information of different \8&tvices in a
repository that is publicly available for searching andwsimg.

Table 1. Perspectives on Web services

)

In our previous work [6], we've analyzed information sows@®ncerning changes of
Web services and introduced a hierarchical informationehtmistore this kind of data
as Atom feeds (see Figure®1)

Based on these empirical observations, we've identifieegdeéencies between dif-
ferent perspectives and generated a common generic madebfneral classification
of the available information (see Figure 2).

During the evolution process of a Web service, we can obdeansitive effects
of changes that lead to a new versions of a Web service (seeeF8). We consider
this change propagation as foundation for the understgrafiavolutionary changes of
Web services. In this respect, we regard a set of interictratedifications as step in the
evolutionary process of Web services.

To illustrate this, let us consider the following illustreg scenario: The provider of
a commercial Web service monitors its service continuoirsiyrder to obtain usage
statistics of Web service. Critical changes in the usagepatlike a drop in the daily
use of a commercial service are very important for the prvith such cases these
changes trigger activities of the Web service provider.ifstance, the provider might
contact the customer and ask for feedback. Let's assuméhthatistomer is not satis-
fied with the pricing of the service with regard to its perfamee which is the reason
for a change in the service usage. The customer might argtiedmpetitors are able to
provide a similar service with a lower price. Since the pdevidoes not want to lose the
customer, the provider adapts the pricing and updates thiespmnding SLA. Mean-
while the developer was informed by the provider that a austois not satisfied and
that the SLA have changed. The provider requests to optithezeervice performance

% see http://berlin.vitalab.tuwien.ac.at/projects/sémfletailed information about the Web ser-
vice information model.

Root Level - contains all
a list of all available
services

+ + + + First Level - describes all
available information

Licre 33 Intiace categories
Second Level - describes
Licence QoS WSDL p— changes of corresponding
f— categories
T —

contains —P Link

A
Feed Entry External file
T

Fig. 1. Web service information model.

because the provider expects in the future customers tdarecletter performance of
the service. These changes have effect on the QoS paramiteedNeb service which
in turn influence the usage of the Web service. As shown by xaenple above, we
can observe change propagations and impacts on differespguives from one single
change event. We've summarized potential changes and tsipatable 2.

In the following subsections we discuss major changes of$&elices in detail. We
show how change activities are interrelated and explainthese activities contribute
to the evolution of Web services. We provide examples thatepresented in our ser-
vice evolution and discuss the benefits of out approach #different stakeholders
of Web services. Notice that we group changes into two grodjesconsider dynamic
changes that occur during runtime. These changes can beveti4®sy monitoring tools
that log performance related QoS attributes (e.g., resptme, throughput, etc.) and
collect data of the use of a Web service. Static changes happ® to the execution of
a Web service and may be triggered by observations of thementiehavior of a Web
service. The trigger for static changes may be either chaimgine observed behavior
(decreasing response time due to more server load) or chantfe requirements such
as requests for new functionality, etc.

3.1 Web Service Requirements Changes

Changes of requirements are the main driver for all evahatigp \Web service changes.
Requirements serve as "benchmark” for the correct funatitnof Web service imple-
mentations. Changes of requirements are thus very critigéhg the evolution of Web
services and have a number of effects on Web service chesdicte

Implementation Changes of requirements affect the implementation of Webcsss,
since changes of Web service functionality need to be imetdgad by the devel-
oper.

¢ fy—————
|
Execution | .
N] Implementation
Environment 1

Developer

X

Service Integrator

% —/+| License |—| SLA I ¢
. User
Provider Folksxonomy/
Feedback

Dependency
_— > Interest

Pre-/Post-
conditions

Usage Interface

Fig. 2. Information model of Web service changes. Note that the mi#grecies between the dif-
ferent attributes are not mandatory and depend on the derszevice.

Interface The interface reflects changes of Web service requiremdrgn these changes
affect functionality of the Web service.

SLA The provider of the Web service may change SLAs with custsmédren their
requirements change. For example, new functionality neels specified in SLAs
as well as changes of the required performance of the Weliceedata quality,
costs, etc.

Pre- and Postconditions With changing requirements the prerequisites for the execu
tion of Web services might change. For example, new requnésmmay require a
registration for customers prior to the use of the Web servihe effects of the
execution of Web service may also change with new requirésnEor example, a
data Web service might provide additional information te tustomer.

All stakeholders of Web services have interest in Web semgquirements. Conceptu-
ally, requirements can be considered as logical link tmédslidifferent aspects of Web
service modifications together. During the evolution of VBebvices, every evolution-

ary step is delimited by the definition of requirements amdghblication of a new Web

service. Activities by stakeholders as modification of thieiface (developer), imple-
mentation (developer), definition of SLAs (provider, usé®dback (service integrator,
user) are triggered by the definition of requirements, ckamgspectively.

Example. As noted before, a change of a requirement triggers a sefadédeactivities
in order to implement the requirement. Utilizing our evadatframework we can track

Broker

\

User Provider =————————— Developer Service Integrator
Usage SLA Requirements Implementation QoS
[bC >0 >0 >0 >0-|
o Change Event —[> changes/oberserves

communicates ——»> triggers

Fig. 3. Propagation of changes and interested parties

these activities and link them. When put into a historicabpective, provider can an-
alyze, based on historical information, the costs of théedéht Web service versions
when following the provided links to details about the impentation (see code snippet
in Listing 1.1).

<change type=Requirenment">
<link>http: //webservice.wisur. at/WISIRISFuzzySearchSewre/?®eqPhon. pef/ link>
<categoryNew Functior</category
<description-A new function was added to the requiremerMtdescription>
<cause type=Feedback">
<reason-Customers want to search with phonetic methods/.reason-
<trigger typezUser">...</trigger>

</cause
<dependencylist
<dependency typednpl ementation"> <!— link to impl. change description—>

<link id="urn:uui d: e2e2f 679- 8a67- 439a- a65e- bbaf d1dd0091" />
</dependency
</dependencylist
<impact<perspective type=Devel oper" />...</impact>
</change

Listing 1.1. WISIRISFuzzySearch requirement change

3.2 Interface Changes

Syntactical descriptions of Web services define availapkrations and the structure
of messages that Web services are capable to process. Wdearangerface changes
as (i) the addition of new functionality or (ii) the updateefisting functionality (e.g.,
interface refinement with new parameters or removal of fonelity). As shown in the
overview table, the trigger such changes can be either thadar, the service integra-
tor or the user of a Web service. The cause of an interfacegehsna change of the

Observed Change|Trigger Impact on Modification of Effect on
Interface Provider, Integrator, Dedmplementation QoS, SLA, Us
User, Serviceveloper age
Integrator
Implementation |Developer Integrator, Implementation QoS, Interface
User
QoS Usage Provider, Implementation, Interfagénterface, QoS,
Developer SLA, Usage
Usage User Provider Contact user SLA, QoS
Requirement User, IntegraProvider, Interface, Impl., SLA (Usage
tor Developer
SLA Provider User, DeveliUsage Requirement,
oper, Integratar QoS, Impl.
Pre-Post Condition®rovider, User, IntegraSLA Impl.
Developer tor
Feedback User, IntegraProvider, SLA Usage
tor Developer

Table 2. Impacts on Web service changes.

requirement. Consequently, interface changes affectgpifithe service integrator that
is using the service in other software systems, since s/et anapt the software sys-
tem that uses the service accordingly.We can observe tloavfob effects of interface
changes:

Implementation Interface changes have impact on the implementation of ad&®eb
vice. Depending of on the type of interface change, we caarvbglifferent effects
on the implementation of a Web service. The addition of nemcfionality or the
update of existing functionality are reflected by modificat of the implementa-
tion.

QoS QoS attributes of Web service may be effected by interfae@gbs. However, an
interface change does not have immediate consequence®®pfpperties. For
instance, if the addition of new service functionality admnges existing imple-
mentation (e.g., optimizations) then the QoS attributeg. (eesponse time, etc.)
also change.

Pre- and Postconditions Changes of the interface have effects on pre- and post-tomnsli
of Web services. These reflect the necessary conditionsthsttbe fulfilled to ex-
ecute a service. For instance, the update of existing fomality to a Web service
might require new constraints to be satisfied, such as thagiwa of a customer
identifier and a trial-key.

Usage Changes of the interface influence the usage of a Web setidess the in-
terface change is backward compatible, a new interfacemneihfunctionality has
impact on the usage of the service.

During the evolution of Web services, each publicly avdéabterface version denotes
a new version of the Web service. By analyzing the frequehiyterface changes, Web
service stakeholders are able to establish the interfabdist of the Web service.

Example. From the perspective of the developer it is important to emhinterface
changes with requirements. In this way it is possible to klwplementations for their
consistency with (functional) requirements. By combimiegsioning information with
interface modifications, developers are able to track wiffeservice versions and cor-
responding requirements.

From the perspective of the service integrator interfacngls are very critical
since the service integrator relies on stable interfaceswifitegrating external services.
When interfaces change, service integrators require Welrss to be compatible with
existing systems. If this is not the case, service integsatmjuire information about the
nature of the interface changes to infer how much they haghdage. In our approach
we follow the classification schema by Leitner et. al.[21Ftassify interface related
changes.

The example in Listing 1.2 illustrates how we integrate thenges into our service
information model and how we link changes dependencieshéncbde snippet, we
show how we represent the addition of new functionality toeb\Wervice.

<change type<lnterface">
<category typezAdd Method" />
<descriptionA new search method was added to the
WISIRS Fuzzy Search Servieddescription-
<cause type=Requirement">

<— link to the requirement where details can be foure>
<link id="urn: uui d: 823157f 7- 7174- 4b09- b815- 64750b0e2f 83" />
</cause

<dependencylist
<dependency type npl ementation">

<!— link to implementation information in SEMF—

<link id="urn: uui d: 912aela0- 96b0- 11dd- ad8b- 0800200c9a66" />
</dependency

</dependencylist

<impact>
<perspective type=System|ntegrator" />

</impact>

</change

Listing 1.2. WISIRISFuzzySearch interface change

3.3 Web Service I mplementation Changes

Closely related to interface changes are implementatiangés. We consider two types
of changes, (i) code refactoring/internal optimizationd &i) change in the function-
ality. The former subcategory are changes that are traespfor all users of the Web
service. The latter is a consequence of interface changes tfie new service function-
ality is expressed by interface changes. Potential trigfmrimplementation changes
are changes of requirements which are caused by the semnacelgr, the user or the
service integrator.Implementation changes have effattthe following attributes of
Web services:

Interface Depending on the type of implementation change, we can vbgdffer-
ent effects of implementation changes on the service exterfThe interface of a
service changes when new functionality is added to the Wehbcgeor removed
from the Web service. Code refactorings or internal cod@upations leave the
interface of a Web service untouched since the functignadinains unmodified.

QoS Internal optimizations have effects on QoS. Consider faetance a database
that is accessed by multiple parallel threads simultariganstead of a sequen-
tial manner. This optimization changes the service exenutme and is reflected
by changes of the response time of the service. Similar, ddéian of security
mechanisms (e.g. WS-Security, etc.) to a service have ingpeQoS attributes.

Pre- and Postconditions Both, pre- and postconditions are potentially affectedby i
plementation changes. Depending on the type of implenientahange, new ser-
vice functionality (e.g., new methods to search in the gtewvdatabase) obviously
requires new pre conditions (e.g., new input parameteed)rttust be satisfied in
order to execute a service. Postcondition changes depetha ¢ype of implemen-
tation change. Consider for example a service that requagthent and is now
free of charge for customers. In this case, the service im@hgation was changed
in order to acknowledge the new form of service use.

Usage The effects on the usage of Web services depend on the typeptdrnentation
change. Similar as in the case with interface changes, nestifuinality can lead to
an increased usage of a Web service, because potentialéyusers can be served.
Internal changes (along with enhanced performance) mightrasult in a higher
usage of the Web service.

In our evolutionary approach, every evolutionary step ecpded be a series of imple-
mentation changes to achieve the fulfillment of requireserte publication of a new
Web service version denotes the finalization of all necgdsgslementation changes.

Example. As in the case of interface changes, the developer needade inodifi-
cations in the source code with respect to changes of ragaires and user/service
integrator feedback. In particular, when the developerifresdthe implementation to
improve the performance the developer needs to know whétleechanges have the
desired impact and requires feedback from the user/seiviegrator. From the per-
spective of the Web service provider it is important to knawhmuch time was spent
to implement in the required modifications. To illustratedf types of change, con-
sider for example a Web service that offers facilities taosle@ a consumer database.
In the example, internal changes were implemented that badfact on the interface
of the Web service. The code snippet in Listing 1.3 illugsatow we capture these
information in our Web service information model.

3.4 Web Service QoS Changes

QoS related changes of Web service depend on changes opotiperties of Web ser-
vices. In contrast to implementation modifications, QoSngjes are observed at run
time. The reasons for QoS changes are manifold: server toadper of concurrent

<change type=lnpl enentation">
<category typeZinternal Modification"/>
<description-The ordering of the search result was changefidescription>
<cause type=Feedback">
<reasomn-User require a ordered search result (by familyname).
<lreason-
<trigger type=User">... </trigger>
<link>webservice . wisur. atd/link>
</cause
<dependencylist <— implementing class—>
<dependency type=Cl ass">
<name-WISIRISSearchWrapper name-
<description-Modification of SQL query/description>
</dependency
</dependencylist

<version numberz1"> <!— versioning information—>
<effort developerid212"> <!— implementation effort—>
<hours>3</hours>
<l effort>

<lversion>
<impact<perspective type=Devel oper" /></impact>
</change

Listing 1.3. WISIRISFuzzySearch implementation change

users, performance of back end systems such as databasesakfactors such as net-
work latency, network throughput, as well as issues likeisgg etc., influence the QoS

attributes of Web services. Domain related QoS attriblitesdata quality (complete-

ness, correctness, etc.) when providing data centriccenare also of concern. For
instance, the hit rate of a search Web service is of impoetarien a provider desires
to sell business reports. Simply put: the higher the hit, ithie higher is the probability

that a user will use the service.We can observe the followfferts QoS changes:

Usage Changes of Web service related QoS have impact on the us&getbofervices.
When a service is selected by QoS attributes like respomee then a degradation
of QoS changes such as a higher response time can lead tocadeshrvice usage.

Implementation Observed QoS changes may lead to implementation chan¢gsadh
optimizations of the program code (e.g., different aldoris) are potentially used
to enhance performance related QoS attributes.

During the evolution of Web services, QoS attributes ses/mdicator concerning the
overallfitnessof the Web service. With QoS information, we are to measudithess
of Web services with regard to SLAs. When put into a histdraamtext, QoS data
provides information about the overall development of a Welvice and allows to
estimate when the performance of a Web service may becotiwatri

Example. With regard to the provision of data centric services, werasisl (i) data
quality (is the provided information up to date? and (ii)itgd QoS (response time,
availability, etc.) of a Web service. We now show an exampd highlights service
quality aspects from the perspective of the service prowidih regard to service per-
formance. The code snippet in Listing 1.4 shows a notificatibout the violation of
SLA constraints that is generated by a monitoring tool tbgslthe performance of

Wisur’'s Web services, making the observation of QoS veryartgnt from the perspec-
tive of the service provider.

Notice that our tool includes information for the developeorder to track the part
of the Web service implementation which is responsibletientiolation of the SLA.

<change typetQoS'>
<category typeZViol ation"/>
<cause type=Usage">
<reason-Response of WISIRISFuzzySearchSerwdeeason-
<trigger type=Service Environnent">...</trigger>
<l/cause
<dependencylist
<dependency type=SLA'><!— link to sla information in SEMF—>
<link id="urn: uui d: da66f 3c0- 96da- 11dd- ad8b- 0800200c9a66" />
</dependency
</dependencylist
<impact>
<perspective type=Devel oper" /><perspective type=Provider" />
<l/impact>
<details>
<classes<class name=W Sl Rl SDat aAccess">
<executiontime59955ms/ executiontime
<exceptionp
</class</classes
<l/details>
</change

Listing 1.4. WISIRISFuzzySearch QoS change natification

Similar to Web service providers, end users are concernddtive Web service
quality. Consider the example, of a Web service which musgigad within 60 seconds
and be available 24/7. The data presented in Figure 4 andeFigshows the observed
execution times of the reporting service of two consecutieaths of a real world Web
service from Wisur. As shown in the figure, the execution talmeing April 2008 was
constantly under 30 seconds, with a tendency to increassdi®dthe end of the month
and a constraint violation at the end of April 2008. This leaduser feedback and
triggered a change in the implementation of the Web serVibe.observed execution
time in May 2008 was considerably higher (more peaks mowmgtds 60 seconds)
but no constraint violation occurred.

4 Discussion and Outlook

In this paper, we analyzed dependencies of Web service esargl provided a model
that captures the changes. We introduced a conceptual miidteh offers the means
for deeper analysis of these changes. In context of Webcgeeviolution we are able
to define arevolutionary ste@s set of activities (modifications of the interface, im-
plementation, requirements, SLA) that are triggered bfedkht stakeholders of Web
services. The result of an evolutionary step is a new versfan\Web service that is
adapted to these changes.

Service Execution Times April 2008 Service Execution Times May 2008

IS
&
3
N
S

350

@
g

a
g

Noow
&
S

Execution Time in Seconds
N
S
s

Execution Time in Seconds

&

Noow B
&

S

mh\li.l ' d‘ M. ulmh th ik Mul\.‘l\

«
g
s

o
o

Fig. 4. Observed execution during April 2008 Fig. 5. Observed execution during May 2008

This lays the foundation for the Web service evolution pssc&\Ve consider Web
service evolution as an (potentialipdefinite sequence of evolutionateps that result
in observable changes of the Web service. We assume thatdheseveralariations
of a Web service at a given point in time. Every variation esgnts a independent
evolution sequence of a Web service and is represented taoyibéd information.

In future work, we will focus on composite Web services angkstigate evolu-
tionary issues of Web service compositions and investigeaphical models for the
representation of the evolution [22] of complex compositebVgervices. Moreover,
we are going to formalize our proposed conceptual meth@yolath a meta model
that provides a formal foundation for roles and change dégecies. Furthermore, we
will investigate complex event processing with regard toletionary aspects. In this
context, we plan to extend our framework with the supportweing processing in the
context of Web service registries as discussed in [23].

References

1. Barros, A.P., Dumas, M.: The rise of web service ecosystet Professiona8 (2006)
31-37

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, Seb \Wervices Description Lan-
guage (WSDL) 2.0 (2007)

3. W3C: OWL Web Ontology Language Overview (2004) W3C Recamdation 10 February
2004.

4. Dumitru, R., de Bruijn, J., Mocan, A., Lausen, H., DomiagJ., Bussler, C., Fensel, D.:
Www: Wsmo, wsml, and wsmx in a nutshell. The Semantic Web - AS¥006 (2006)
516-522

5. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Saiut, M.T., Sheth, A., Verma, K.: Web
Services Semantics — WSDL-S (2005)

6. Treiber, M., Truong, H.L., Dustdar, S.: Semf - serviceletion management framework.
In: SEAA 2008. (2008) to appear

7. OASIS: Web Services Distributed Management: Managerokkiteb Services (WSDM-
MOWS) 1.1 (2006)

8. Catania, N., Kumar, P., Murray, B., Pourhedari, H., Vamgpe, W., Wurster, K.: Web ser-
vices management framework, version 2.0 (2003)

9. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Businesmstetd management of web services.
Commun. ACM46 (2003) 55-60

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Ch¥n,Du, N.: A version-aware
approach for web service directory. In: ICWS. (2007) 40&-41

Kaminski, P., Mdller, H., Litoiu, M.: A design for aday¢ web service evolution. In:
SEAMS '06: Proceedings of the 2006 international workshoelf-adaptation and self-
managing systems, New York, NY, USA, ACM (2006) 8692

Ghezzi, C., Guinea, S.: Run-time monitoring in senadented architectures. In: Test and
Analysis of Web Services. Springer (2007) 237—-264

Conradi, R., Westfechtel, B.: Version models for sofeweonfiguration management. ACM
Comput. Surv30 (1998) 232282

Lehman, M.M., Ramil, J.F.: Software evolution: backgrd, theory, practice. Inf. Process.
Lett. 88 (2003) 3344

Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Etolu in software systems: foun-
dations of the spe classification scheme: Research artitl&oftw. Maint. Evol18 (2006)
1-35

Lehman, M.M.: Laws of software evolution revisited. BWSPT '96: Proceedings of the 5th
European Workshop on Software Process Technology, LondiinSpringer-Verlag (1996)
108-124

Papazoglou, M.: The challenges of service evolutionvafded Information Systems Engi-
neering (2008) 1-15

Andrikopoulos, V., Benbernou, S., Papazoglou, M.: Mamgthe evolution of service spec-
ifications. Advanced Information Systems Engineering 8®59-374

Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Usingmiggncy models to manage complex
software architecture. SIGPLAN Nat0 (2005) 167-176

Canfora, G., Penta, M.D.: Testing services and secacgric systems: Challenges and
opportunities. IT Profession8l(2006) 10-17

Leitner, P., Michimayr, A., Rosenberg, F., Dustdar, End-to-end versioning support for
web services. Services Computing, 2008. SCC '08. IEEE matésnal Conference of
(2008) 59-66

Lugi: A graph model for software evolution. IEEE Trarsas on Software Engineering
16 (1990) 917-927

Michimayr, A., Rosenberg, F., Leitner, P., Dustdar,/Alvanced event processing and noti-
fications in service runtime environments. In: DEBS. (20085-125

