
On Analyzing Evolutionary Changes of Web Services⋆

Martin Treiber, Hong-Linh Truong, Schahram Dustdar

VitaLab, Distributed Systems Group
Institute of Information Systems
Vienna University of Technology

{treiber, truong, dustdar}@infosys.tuwien.ac.at

Abstract. Web services evolve over their life time and change their behavior. In
our work, we analyze Web service related changes and investigate interdependen-
cies of Web service related changes. We classify changes of Web services for an
analysis regarding causes and effects of such changes and utilize a dedicated Web
service information model to capture the changes of Web services. We show how
to put changes of Web services into an evolutionary context that allows us to de-
velop a holistic perspective on Web services and their stakeholders in a ecosystem
of Web services.

1 Introduction

Web services undergo changes during their life time. This behavior is of particular inter-
est when putting Web services in the context of Web service ecosystems [1]. With regard
to Web services, a Web service ecosystem is the environment in which a Web service
operates. The environment consists of different stakeholders that have interest in Web
services and influence or control the life cycle of a Web service. To understand these
ecosystems, we need to understand Web services with regard to evolutionary aspects
since they are the central entities in the ecosystems. In particular, we need to analyze
the artifacts that have impact on Web services, Web service ecosystems respectively,
and investigate the reasons for changes of Web services.

Currently there is little support for Web service evolution, even though the evolution
of Web services accounts for major development costs. The evolution of Web services
involves changes of requirements, changes of the implementation, changes of the Web
service semantics, changes Web service usage and so on. These activities originate from
different stakeholders, such as developers, providers, users and service integrators that
interact in Web service ecosystems.

In this work, we focus on the complexity of evolutionary Web service modifica-
tions. It’s important for Web service providers to understand the prerequisites and the
consequences of modifications of Web services in the light oflimited resources (time,
manpower, money). Current practices to describe Web services do not take these dy-
namic aspects into account. Approaches such as (WSDL [2], OWL-S [3], WSMO [4],
WSDL-S [5]) primarily focus on interface related issues anddo not model changes. We

⋆ The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

argue that an evolutionary model requires a holistic perspective on Web services and
needs to integrate information from various perspectives as well as different (design
time and run time) data sources [6].

Real world Web services provide valuable input for our investigations with regard
to the understanding of Web service evolution. In this paperwe are using real world
Web services of an Austrian SME called Wisur1 to illustrate the challenges concerning
Web service evolution. Wisur provides business related information to customers. Their
main business is to sell business reports with information about companies (turnover, fi-
nancial situation, etc) and consumer data (address, date ofbirth, etc.) to their customers.
Wisur’s customers use Wisur’s Web services to search in Wisur’s database and to ac-
cess the desired information2. As soon as the requirements of customers change, Wisur
needs to adapt their services accordingly. Examples are forinstance the addition of new
functions to existing services, or the creation of new Web services. In addition, Wisur
reviews it’s Web services once a month to look for issues thatmight cause problems in
the future. For instance, a planned augmentation of a database with consumer data can
lead to longer execution times of queries which have impact on the overall execution
time of the Web service that queries data from this database.When putting these activ-
ity into the context of Web service evolution, we can observethe need for classification
of modification activities under the umbrella of Web serviceevolution.In this paper, we
focus on the evolution of single Web services that we consider as atomic building blocks
of Web service ecosystems. In particular we analyze changesof Web services based on
empirical observations. We investigate the impact of thesechanges from different per-
spectives. We propose a methodology that identifies influencing factors of Web services
and a model of Web service related changes. Our major contribution is to define the ba-
sic element of Web service evolution, i.e. theevolutionary step, and embed it in Web
service ecosystems. The rest of the paper is organized as follows. After summarizing
related work in Section 2 we provide our analysis of changes of Web services in Section
3. We conclude the paper with a discussion and an outlook in Section 4.

2 Related Work

From an organizational point of view, our work is related to service management in
general. Approaches such as WSDM [7] or WSMF [8] offer frameworks to collect
data about Web services and to manage them. The work of Casatiet. al. [9] focuses
on the business perspective of Web service management. Fanget. al. [10] discuss the
management of service interface changes. The authors describe version-aware service
descriptions and directory models. The work by Kaminski [11] introduces a framework
that supports service interface adaptors for backward compatible versioning of Web
services. Our work covers different aspects of service changes, such as runtime aspects
(e.g., QoS), implementation changes, semantic changes, etc.

The collection of run time information about Web services (usage statistics, logging,
etc.) is discussed by Ghezzi et. al. [12]. The area of Software Configuration Manage-

1 http://www.wisur.at
2 see http://webservice.wisur.at:8000/axis/services/WISIRISFuzzySearchService?wsdl for an

example of a Web service

ment [13] is also related to our research with regard to analysis of changes of software
systems and versioning issues. We follow ideas such as the collection, classification
and monitoring of change events from the aforementioned approaches. However, our
approach differs insofar, since we focus on evolutionary aspects that are not covered by
management approaches.

From an evolutionary perspective, our work is closely related to evolutionary as-
pects of software in general. Of particular importance is the work of in [14] where the
authors studied software changes and considered software systems as dynamic entities
that change over time. Lessons can also be learned from the basic SPE classification
scheme which is extensively discussed in [15] and [16].

Papazoglou [17] discusses the challenges of service evolution and introduces two
categories of service related changes. While similar in spirit, our work follows a broader
scope, since our approach introduces a concrete information model to capture service
related changes and lays the foundation for deeper analysisof service related changes.
Andrikopoulos et. al. [18] discuss the management of service specification evolution.
The author’s abstract service definition model addresses Web service evolution on an
abstract layer whereas we follow a bottom up approach with the analysis of single Web
services with regard to Web service evolution.

The work in [19] describes the use of a dependency structure matrix that reflects the
overall software structure and highlights dependency patterns between software com-
ponents. Our work includes the aspect of dependency, however, we focus on a broader
set of information in our analysis (e.g., QoS information, usage data).

3 The Anatomy of Web Service Changes

In this section, we analyze changes that are related to Web services. As indicated by
the working example of the introduction, changes of Web service happen due to various
reasons. During our observations, we’ve developed a methodology that classifies the
factors of influence associated with Web services (see Table1). We base our classifi-
cation of the factors of influence on the work of Canfora and Penta [20] that identified
the different stakeholders of Web services. Our proposed methodology consists of the
following steps:

1. Identify the stakeholders that are interested in the Web service. This is done by an-
alyzing the development process of Web services and investigating how the com-
munication process is structured. For instance, developers might be informed about
changes of Web service requirements by phone or by email.

2. Identify the tasks of the corresponding stakeholders. This step is basically the as-
signment of responsibilities to the interested parties. For instance, a user of a Web
service is responsible for giving feedback about the service performance.

3. Collect data of Web services and identify the source of thedata. In this step, we
distinguish between runtime and static data. Runtime information (e.g., QoS, Web
service usage statistics) is provided by tools that continuously monitor Web ser-
vices. Other Web service related information is (e.g., requirements, user feedback)
is entered into a persistence framework by developers, etc.

Perspective Task
Provider The provider is responsible for the planing and conception of the Web service.

This includes the definition of requirements, the negotiation of SLA with
customers, service pricing policy, etc. as well as managingchanges of these.

Developer The main task of the developer is the implementation of the Web service.
The developer needs to manage changes of interface descriptions, different
versions of the implementation and track change of requirements.

Service IntegratorThe service integrator’s task is to integrate external services into a software
system and focuses on technical aspects of services. Service integrators are
interested in changes of the interface, QoS attributes and the semantics of the
Web service since these have effects on the integration of the Web service.
Service integrators also modify the requirements of Web services.

User The end user of a Web service is the actual consumer of a Web service and has
interest in the functionality of Web services from a non technical perspective.
The end user specifies the functional requirements and defines QoS attributes
that must be satisfied by a Web service.

Broker The Web service broker manages information of different Webservices in a
repository that is publicly available for searching and browsing.

Table 1. Perspectives on Web services

In our previous work [6], we’ve analyzed information sources concerning changes of
Web services and introduced a hierarchical information model to store this kind of data
as Atom feeds (see Figure 1)3.

Based on these empirical observations, we’ve identified dependencies between dif-
ferent perspectives and generated a common generic model for a general classification
of the available information (see Figure 2).

During the evolution process of a Web service, we can observetransitive effects
of changes that lead to a new versions of a Web service (see Figure 3). We consider
this change propagation as foundation for the understanding of evolutionary changes of
Web services. In this respect, we regard a set of interrelated modifications as step in the
evolutionary process of Web services.

To illustrate this, let us consider the following illustrating scenario: The provider of
a commercial Web service monitors its service continuouslyin order to obtain usage
statistics of Web service. Critical changes in the usage pattern, like a drop in the daily
use of a commercial service are very important for the provider. In such cases these
changes trigger activities of the Web service provider. Forinstance, the provider might
contact the customer and ask for feedback. Let’s assume thatthe customer is not satis-
fied with the pricing of the service with regard to its performance which is the reason
for a change in the service usage. The customer might argue that competitors are able to
provide a similar service with a lower price. Since the provider does not want to lose the
customer, the provider adapts the pricing and updates the corresponding SLA. Mean-
while the developer was informed by the provider that a customer is not satisfied and
that the SLA have changed. The provider requests to optimizethe service performance

3 see http://berlin.vitalab.tuwien.ac.at/projects/semffor detailed information about the Web ser-
vice information model.

containsExternal file

Licence

Web

Service

WSDLQoS

Feed Entry

Root Level - contains all

a list of all available

services

First Level - describes all

available information

categories

Second Level - describes

changes of corresponding

categories

Link

Licence QoS Interface ...

Fig. 1. Web service information model.

because the provider expects in the future customers to require better performance of
the service. These changes have effect on the QoS parametersof the Web service which
in turn influence the usage of the Web service. As shown by the example above, we
can observe change propagations and impacts on different perspectives from one single
change event. We’ve summarized potential changes and impacts in Table 2.

In the following subsections we discuss major changes of Webservices in detail. We
show how change activities are interrelated and explain howthese activities contribute
to the evolution of Web services. We provide examples that are represented in our ser-
vice evolution and discuss the benefits of out approach for the different stakeholders
of Web services. Notice that we group changes into two groups. We consider dynamic
changes that occur during runtime. These changes can be observed by monitoring tools
that log performance related QoS attributes (e.g., response time, throughput, etc.) and
collect data of the use of a Web service. Static changes happen prior to the execution of
a Web service and may be triggered by observations of the run time behavior of a Web
service. The trigger for static changes may be either changes in the observed behavior
(decreasing response time due to more server load) or changes in the requirements such
as requests for new functionality, etc.

3.1 Web Service Requirements Changes

Changes of requirements are the main driver for all evolutionary Web service changes.
Requirements serve as ”benchmark” for the correct functionality of Web service imple-
mentations. Changes of requirements are thus very criticalduring the evolution of Web
services and have a number of effects on Web service characteristics:

Implementation Changes of requirements affect the implementation of Web services,
since changes of Web service functionality need to be implemented by the devel-
oper.

OoS

Interface

Implementation

Folksxonomy/

Feedback

Execution

Environment

SLALicense

Pre-/Post-

conditions

Requirements

Usage

Dependency

Interest

Attribute/

Characteristic

Developer

Service Integrator

User
Provider

Service

Fig. 2. Information model of Web service changes. Note that the dependencies between the dif-
ferent attributes are not mandatory and depend on the concrete service.

Interface The interface reflects changes of Web service requirements when these changes
affect functionality of the Web service.

SLA The provider of the Web service may change SLAs with customers when their
requirements change. For example, new functionality needsto be specified in SLAs
as well as changes of the required performance of the Web service, data quality,
costs, etc.

Pre- and Postconditions With changing requirements the prerequisites for the execu-
tion of Web services might change. For example, new requirements may require a
registration for customers prior to the use of the Web service. The effects of the
execution of Web service may also change with new requirements. For example, a
data Web service might provide additional information to the customer.

All stakeholders of Web services have interest in Web service requirements. Conceptu-
ally, requirements can be considered as logical link that links different aspects of Web
service modifications together. During the evolution of Webservices, every evolution-
ary step is delimited by the definition of requirements and the publication of a new Web
service. Activities by stakeholders as modification of the interface (developer), imple-
mentation (developer), definition of SLAs (provider, user), feedback (service integrator,
user) are triggered by the definition of requirements, changes respectively.

Example. As noted before, a change of a requirement triggers a set of related activities
in order to implement the requirement. Utilizing our evolution framework we can track

Usage SLA Requirements Implementation QoS

User Provider Developer Service Integrator

Change Event

triggerscommunicates

changes/oberserves

Broker

Fig. 3. Propagation of changes and interested parties

these activities and link them. When put into a historical perspective, provider can an-
alyze, based on historical information, the costs of the different Web service versions
when following the provided links to details about the implementation (see code snippet
in Listing 1.1).

<change type ="Requirement">
< l i n k>h t t p : / / we bs e rv i c e . w i s u r . a t / WISIRISFuzzySearchServ ice ? ReqPhon . pdf</ l i n k>

<c a t e g o r y>New Func t i on</ c a t e g o r y>
<d e s c r i p t i o n>A new f u n c t i o n was added to the r e q u i r e m e n t</ d e s c r i p t i o n>
<c a us e type ="Feedback">

<re a s on>Cus tomers want to s e a r c h wi th p h o n e t i c methods .</ r e a s on>
< t r i g g e r t ype ="User"> . . .</ t r i g g e r>

</ c a us e>
<d e p e n d e n c y l i s t>

<dependency t ype ="Implementation"> <!−− l i n k to imp l . change d e s c r i p t i o n−−>

< l i n k i d ="urn:uuid:e2e2f679-8a67-439a-a65e-bbafd1dd0091" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t><p e r s p e c t i v e t ype ="Developer" /> . . .</ impac t>
</ change>

Listing 1.1. WISIRISFuzzySearch requirement change

3.2 Interface Changes

Syntactical descriptions of Web services define available operations and the structure
of messages that Web services are capable to process. We consider interface changes
as (i) the addition of new functionality or (ii) the update ofexisting functionality (e.g.,
interface refinement with new parameters or removal of functionality). As shown in the
overview table, the trigger such changes can be either the provider, the service integra-
tor or the user of a Web service. The cause of an interface change is a change of the

Observed Change Trigger Impact on Modification of Effect on
Interface Provider,

User, Service
Integrator

Integrator, De-
veloper

Implementation QoS, SLA, Us-
age

Implementation Developer Integrator,
User

Implementation QoS, Interface

QoS Usage Provider,
Developer

Implementation, InterfaceInterface, QoS,
SLA, Usage

Usage User Provider Contact user SLA, QoS
Requirement User, Integra-

tor
Provider,
Developer

Interface, Impl., SLA Usage

SLA Provider User, Devel-
oper, Integrator

Usage Requirement,
QoS, Impl.

Pre-Post ConditionsProvider,
Developer

User, Integra-
tor

SLA Impl.

Feedback User, Integra-
tor

Provider,
Developer

SLA Usage

Table 2. Impacts on Web service changes.

requirement. Consequently, interface changes affect primarily the service integrator that
is using the service in other software systems, since s/he must adapt the software sys-
tem that uses the service accordingly.We can observe the following effects of interface
changes:

Implementation Interface changes have impact on the implementation of a Webser-
vice. Depending of on the type of interface change, we can observe different effects
on the implementation of a Web service. The addition of new functionality or the
update of existing functionality are reflected by modifications of the implementa-
tion.

QoS QoS attributes of Web service may be effected by interface changes. However, an
interface change does not have immediate consequences for QoS properties. For
instance, if the addition of new service functionality alsochanges existing imple-
mentation (e.g., optimizations) then the QoS attributes (e.g., response time, etc.)
also change.

Pre- and Postconditions Changes of the interface have effects on pre- and post-conditions
of Web services. These reflect the necessary conditions thatmust be fulfilled to ex-
ecute a service. For instance, the update of existing functionality to a Web service
might require new constraints to be satisfied, such as the provision of a customer
identifier and a trial-key.

Usage Changes of the interface influence the usage of a Web service.Unless the in-
terface change is backward compatible, a new interface withnew functionality has
impact on the usage of the service.

During the evolution of Web services, each publicly available interface version denotes
a new version of the Web service. By analyzing the frequency of interface changes, Web
service stakeholders are able to establish the interface stability of the Web service.

Example. From the perspective of the developer it is important to connect interface
changes with requirements. In this way it is possible to check implementations for their
consistency with (functional) requirements. By combiningversioning information with
interface modifications, developers are able to track different service versions and cor-
responding requirements.

From the perspective of the service integrator interface changes are very critical
since the service integrator relies on stable interfaces when integrating external services.
When interfaces change, service integrators require Web services to be compatible with
existing systems. If this is not the case, service integrators require information about the
nature of the interface changes to infer how much they have tochange. In our approach
we follow the classification schema by Leitner et. al.[21] toclassify interface related
changes.

The example in Listing 1.2 illustrates how we integrate the changes into our service
information model and how we link changes dependencies. In the code snippet, we
show how we represent the addition of new functionality to a Web service.

<change type ="Interface">
<c a t e g o r y t ype ="Add Method" />
<d e s c r i p t i o n>A new s e a r c h method was added to the
WISIRS Fuzzy Search S e r v i c e</ d e s c r i p t i o n>
<c a us e type ="Requirement">
<−− l i n k to the r e qu i r e me n t where d e t a i l s can be found−−>

< l i n k i d ="urn:uuid:823157f7-7174-4b09-b815-64750b0e2f83" />
</ c a us e>

<d e p e n d e n c y l i s t>
<dependency t ype ="Implementation">

<!−− l i n k to imp le me n ta t i on i n f o r m a t i o n in SEMF−−>

< l i n k i d ="urn:uuid:912ae1a0-96b0-11dd-ad8b-0800200c9a66" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t>

<p e r s p e c t i v e t ype ="System Integrator" />
</ impac t>
</ change>

Listing 1.2. WISIRISFuzzySearch interface change

3.3 Web Service Implementation Changes

Closely related to interface changes are implementation changes. We consider two types
of changes, (i) code refactoring/internal optimizations and (ii) change in the function-
ality. The former subcategory are changes that are transparent for all users of the Web
service. The latter is a consequence of interface changes since the new service function-
ality is expressed by interface changes. Potential triggers for implementation changes
are changes of requirements which are caused by the service provider, the user or the
service integrator.Implementation changes have effects on the following attributes of
Web services:

Interface Depending on the type of implementation change, we can observe differ-
ent effects of implementation changes on the service interface. The interface of a
service changes when new functionality is added to the Web service or removed
from the Web service. Code refactorings or internal code optimizations leave the
interface of a Web service untouched since the functionality remains unmodified.

QoS Internal optimizations have effects on QoS. Consider for instance a database
that is accessed by multiple parallel threads simultaneously instead of a sequen-
tial manner. This optimization changes the service execution time and is reflected
by changes of the response time of the service. Similar, the addition of security
mechanisms (e.g. WS-Security, etc.) to a service have impact on QoS attributes.

Pre- and Postconditions Both, pre- and postconditions are potentially affected by im-
plementation changes. Depending on the type of implementation change, new ser-
vice functionality (e.g., new methods to search in the provider database) obviously
requires new pre conditions (e.g., new input parameters) that must be satisfied in
order to execute a service. Postcondition changes depend onthe type of implemen-
tation change. Consider for example a service that requiredpayment and is now
free of charge for customers. In this case, the service implementation was changed
in order to acknowledge the new form of service use.

Usage The effects on the usage of Web services depend on the type of implementation
change. Similar as in the case with interface changes, new functionality can lead to
an increased usage of a Web service, because potentially more users can be served.
Internal changes (along with enhanced performance) might also result in a higher
usage of the Web service.

In our evolutionary approach, every evolutionary step is preceded be a series of imple-
mentation changes to achieve the fulfillment of requirements. The publication of a new
Web service version denotes the finalization of all necessary implementation changes.

Example. As in the case of interface changes, the developer needs to trace modifi-
cations in the source code with respect to changes of requirements and user/service
integrator feedback. In particular, when the developer modifies the implementation to
improve the performance the developer needs to know whetherthe changes have the
desired impact and requires feedback from the user/serviceintegrator. From the per-
spective of the Web service provider it is important to know how much time was spent
to implement in the required modifications. To illustrate these types of change, con-
sider for example a Web service that offers facilities to search in a consumer database.
In the example, internal changes were implemented that had no effect on the interface
of the Web service. The code snippet in Listing 1.3 illustrates how we capture these
information in our Web service information model.

3.4 Web Service QoS Changes

QoS related changes of Web service depend on changes of otherproperties of Web ser-
vices. In contrast to implementation modifications, QoS changes are observed at run
time. The reasons for QoS changes are manifold: server load,number of concurrent

<change type ="Implementation">
<c a t e g o r y t ype ="Internal Modification" />
<d e s c r i p t i o n>The o r d e r i n g of t he s e a r c h r e s u l t was changed .</ d e s c r i p t i o n>
<c a us e type ="Feedback">

<re a s on>User r e q u i r e a o rde re d s e a r c h r e s u l t (by fami lyname) .
</ r e a s on>
< t r i g g e r t ype ="User"> . . . </ t r i g g e r>

< l i n k>we bs e rv i c e . w i s u r . a t /</ l i n k>

</ c a us e>
<d e p e n d e n c y l i s t> <−− imp le me n t i ng c l a s s−−>

<dependency t ype ="Class">
<name>WISIRISSearchWrapper</ name>

<d e s c r i p t i o n>M o d i f i c a t i o n of SQL query</ d e s c r i p t i o n>
</ dependency>

</ d e p e n d e n c y l i s t>
<v e r s i o n number="1"> <!−− v e r s i o n i n g i n f o r m a t i o n−−>

<e f f o r t d e v e l o p e r i d ="12"> <!−− imp le me n ta t i on e f f o r t−−>

<hou rs>3</ hou rs>
</ e f f o r t>

</ v e r s i o n>

<impac t><p e r s p e c t i v e t ype ="Developer" /></ impac t>
</ change>

Listing 1.3. WISIRISFuzzySearch implementation change

users, performance of back end systems such as databases, external factors such as net-
work latency, network throughput, as well as issues like security, etc., influence the QoS
attributes of Web services. Domain related QoS attributes,like data quality (complete-
ness, correctness, etc.) when providing data centric services are also of concern. For
instance, the hit rate of a search Web service is of importance when a provider desires
to sell business reports. Simply put: the higher the hit rate, the higher is the probability
that a user will use the service.We can observe the followingeffects QoS changes:

Usage Changes of Web service related QoS have impact on the usage ofWeb services.
When a service is selected by QoS attributes like response time, then a degradation
of QoS changes such as a higher response time can lead to a reduced service usage.

Implementation Observed QoS changes may lead to implementation changes. Internal
optimizations of the program code (e.g., different algorithms) are potentially used
to enhance performance related QoS attributes.

During the evolution of Web services, QoS attributes serve as indicator concerning the
overallfitnessof the Web service. With QoS information, we are to measure the fitness
of Web services with regard to SLAs. When put into a historical context, QoS data
provides information about the overall development of a Webservice and allows to
estimate when the performance of a Web service may become critical.

Example. With regard to the provision of data centric services, we address (i) data
quality (is the provided information up to date? and (ii) typical QoS (response time,
availability, etc.) of a Web service. We now show an example that highlights service
quality aspects from the perspective of the service provider with regard to service per-
formance. The code snippet in Listing 1.4 shows a notification about the violation of
SLA constraints that is generated by a monitoring tool that logs the performance of

Wisur’s Web services, making the observation of QoS very important from the perspec-
tive of the service provider.

Notice that our tool includes information for the developerin order to track the part
of the Web service implementation which is responsible for the violation of the SLA.

<change type ="QoS">
<c a t e g o r y t ype ="Violation" />
<c a us e type ="Usage">

<re a s on>Response of WISIRISFuzzySearchServ ice</ r e a s on>
< t r i g g e r t ype ="Service Environment"> . . .</ t r i g g e r>

</ c a us e>
<d e p e n d e n c y l i s t>
<dependency t ype ="SLA"><!−− l i n k to s l a i n f o r m a t i o n in SEMF−−>

< l i n k i d ="urn:uuid:da66f3c0-96da-11dd-ad8b-0800200c9a66" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t>

<p e r s p e c t i v e t ype ="Developer" /><p e r s p e c t i v e t ype ="Provider" />
</ impac t>
<d e t a i l s>

<c l a s s e s><c l a s s name="WISIRISDataAccess">
<e x e c u t i o n t i m e>59955ms</ e x e c u t i o n t i m e>
<e x c e p t i o n />
</ c l a s s></ c l a s s e s>

</ d e t a i l s>
</ change>

Listing 1.4. WISIRISFuzzySearch QoS change notification

Similar to Web service providers, end users are concerned with the Web service
quality. Consider the example, of a Web service which must respond within 60 seconds
and be available 24/7. The data presented in Figure 4 and Figure 5 shows the observed
execution times of the reporting service of two consecutivemonths of a real world Web
service from Wisur. As shown in the figure, the execution timeduring April 2008 was
constantly under 30 seconds, with a tendency to increase towards the end of the month
and a constraint violation at the end of April 2008. This leadto user feedback and
triggered a change in the implementation of the Web service.The observed execution
time in May 2008 was considerably higher (more peaks moving towards 60 seconds)
but no constraint violation occurred.

4 Discussion and Outlook

In this paper, we analyzed dependencies of Web service changes and provided a model
that captures the changes. We introduced a conceptual modelwhich offers the means
for deeper analysis of these changes. In context of Web service evolution we are able
to define anevolutionary stepas set of activities (modifications of the interface, im-
plementation, requirements, SLA) that are triggered by different stakeholders of Web
services. The result of an evolutionary step is a new versionof a Web service that is
adapted to these changes.

Service Execution Times April 2008

0

50

100

150

200

250

300

350

400

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d
s

Fig. 4. Observed execution during April 2008

Service Execution Times May 2008

0

10

20

30

40

50

60

70

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d
s

Fig. 5. Observed execution during May 2008

This lays the foundation for the Web service evolution process. We consider Web
service evolution as an (potentially)indefinite sequence of evolutionarysteps that result
in observable changes of the Web service. We assume that there are severalvariations
of a Web service at a given point in time. Every variation represents a independent
evolution sequence of a Web service and is represented by historical information.

In future work, we will focus on composite Web services and investigate evolu-
tionary issues of Web service compositions and investigategraphical models for the
representation of the evolution [22] of complex composite Web services. Moreover,
we are going to formalize our proposed conceptual methodology with a meta model
that provides a formal foundation for roles and change dependencies. Furthermore, we
will investigate complex event processing with regard to evolutionary aspects. In this
context, we plan to extend our framework with the support of event processing in the
context of Web service registries as discussed in [23].

References

1. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional8 (2006)
31–37

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description Lan-
guage (WSDL) 2.0 (2007)

3. W3C: OWL Web Ontology Language Overview (2004) W3C Recommendation 10 February
2004.

4. Dumitru, R., de Bruijn, J., Mocan, A., Lausen, H., Domingue, J., Bussler, C., Fensel, D.:
Www: Wsmo, wsml, and wsmx in a nutshell. The Semantic Web - ASWC 2006 (2006)
516–522

5. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.: Web
Services Semantics – WSDL-S (2005)

6. Treiber, M., Truong, H.L., Dustdar, S.: Semf - service evolution management framework.
In: SEAA 2008. (2008) to appear

7. OASIS: Web Services Distributed Management: Managementof Web Services (WSDM-
MOWS) 1.1 (2006)

8. Catania, N., Kumar, P., Murray, B., Pourhedari, H., Vambenepe, W., Wurster, K.: Web ser-
vices management framework, version 2.0 (2003)

9. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Business-oriented management of web services.
Commun. ACM46 (2003) 55–60

10. Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Chen,Y., Du, N.: A version-aware
approach for web service directory. In: ICWS. (2007) 406–413

11. Kaminski, P., Múller, H., Litoiu, M.: A design for adaptive web service evolution. In:
SEAMS ’06: Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems, New York, NY, USA, ACM (2006) 86–92

12. Ghezzi, C., Guinea, S.: Run-time monitoring in service-oriented architectures. In: Test and
Analysis of Web Services. Springer (2007) 237–264

13. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Comput. Surv.30 (1998) 232–282

14. Lehman, M.M., Ramil, J.F.: Software evolution: background, theory, practice. Inf. Process.
Lett. 88 (2003) 33–44

15. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems: foun-
dations of the spe classification scheme: Research articles. J. Softw. Maint. Evol.18 (2006)
1–35

16. Lehman, M.M.: Laws of software evolution revisited. In:EWSPT ’96: Proceedings of the 5th
European Workshop on Software Process Technology, London,UK, Springer-Verlag (1996)
108–124

17. Papazoglou, M.: The challenges of service evolution. Advanced Information Systems Engi-
neering (2008) 1–15

18. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: Managing the evolution of service spec-
ifications. Advanced Information Systems Engineering (2008) 359–374

19. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage complex
software architecture. SIGPLAN Not.40 (2005) 167–176

20. Canfora, G., Penta, M.D.: Testing services and service-centric systems: Challenges and
opportunities. IT Professional8 (2006) 10–17

21. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.:End-to-end versioning support for
web services. Services Computing, 2008. SCC ’08. IEEE International Conference on1
(2008) 59–66

22. Luqi: A graph model for software evolution. IEEE Transactions on Software Engineering
16 (1990) 917–927

23. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.:Advanced event processing and noti-
fications in service runtime environments. In: DEBS. (2008)115–125

